What allows for many different types of formatting and configuration changes on a table?
A) The Table Properties dialog box B) The Paragraph tab
C) A column delimiter D) The Convert Text to Table option
A
You might also like to view...
In a blue-to-yellow gradient, the color at the midpoint would be ____.
A. aqua B. green C. cyan D. orange
Consider class Complex shown in Figs. 11.1–11.3. The class enables opera- tions on so-called complex numbers. These are numbers of the form realPart + imaginaryPart * i, where i has the value ?-1
a) Modify the class to enable input and output of complex numbers through the overloaded >> and << operators, respectively (you should remove the print function from the class). b) Overload the multiplication operator to enable multiplication of two complex numbers as in algebra. c) Overload the == and != operators to allow comparisons of complex numbers. Fig. 11.1 Complex class definition.
// Complex class definition. #ifndef COMPLEX_H #define COMPLEX_H class Complex { public: Complex( double = 0.0, double = 0.0 ); // constructor Complex operator+( const Complex & ) const; // addition Complex operator-( const Complex & ) const; // subtraction void print() const; // output private: double real; // real part double imaginary; // imaginary part }; // end class Complex #endifFig. 11.2 | Complex class member-function definitions.
// Complex class member-function definitions. #includeFig. 11.3 | Complex numbers.#include "Complex.h" // Complex class definition using namespace std; // Constructor Complex::Complex( double realPart, double imaginaryPart ) : real( realPart ), imaginary( imaginaryPart ) { // empty body } // end Complex constructor // addition operator Complex Complex::operator+( const Complex &operand2 ) const { return Complex( real + operand2.real, imaginary + operand2.imaginary ); } // end function operator+ // subtraction operator Complex Complex::operator-( const Complex &operand2 ) const { return Complex( real - operand2.real, imaginary - operand2.imaginary ); } // end function operator- // display a Complex object in the form: (a, b) void Complex::print() const { cout << '(' << real << ", " << imaginary << ')'; } // end function print
// Complex class test program. #includex: (0, 0) y: (4.3, 8.2) z: (3.3, 1.1) x = y + z: (7.6, 9.3) = (4.3, 8.2) + (3.3, 1.1) x = y - z: (1, 7.1) = (4.3, 8.2) - (3.3, 1.1)#include "Complex.h" using namespace std; int main() { Complex x; Complex y( 4.3, 8.2 ); Complex z( 3.3, 1.1 ); cout << "x: "; x.print(); cout << "\ny: "; y.print(); cout << "\nz: "; z.print(); x = y + z; cout << "\n\nx = y + z:" << endl; x.print(); cout << " = "; y.print(); cout << " + "; z.print(); x = y - z; cout << "\n\nx = y - z:" << endl; x.print(); cout << " = "; y.print(); cout << " - "; z.print(); cout << endl; } // end main