What allows for many different types of formatting and configuration changes on a table?

A) The Table Properties dialog box B) The Paragraph tab
C) A column delimiter D) The Convert Text to Table option

A

Computer Science & Information Technology

You might also like to view...

In a blue-to-yellow gradient, the color at the midpoint would be ____.

A. aqua B. green C. cyan D. orange

Computer Science & Information Technology

Consider class Complex shown in Figs. 11.1–11.3. The class enables opera- tions on so-called complex numbers. These are numbers of the form realPart + imaginaryPart * i, where i has the value ?-1

a) Modify the class to enable input and output of complex numbers through the overloaded >> and << operators, respectively (you should remove the print function from the class). b) Overload the multiplication operator to enable multiplication of two complex numbers as in algebra. c) Overload the == and != operators to allow comparisons of complex numbers. Fig. 11.1 Complex class definition.

 // Complex class definition.
 #ifndef COMPLEX_H
 #define COMPLEX_H

 class Complex
 {
 public:
 Complex( double = 0.0, double = 0.0 ); // constructor
 Complex operator+( const Complex & ) const; // addition
 Complex operator-( const Complex & ) const; // subtraction
 void print() const; // output
 private:
 double real; // real part
 double imaginary; // imaginary part
 }; // end class Complex

 #endif
Fig. 11.2 | Complex class member-function definitions.
 // Complex class member-function definitions.
 #include 
 #include "Complex.h" // Complex class definition
 using namespace std;

 // Constructor
 Complex::Complex( double realPart, double imaginaryPart )
 : real( realPart ),
 imaginary( imaginaryPart )
 {
 // empty body
 } // end Complex constructor

 // addition operator
 Complex Complex::operator+( const Complex &operand2 ) const
 {
 return Complex( real + operand2.real,
 imaginary + operand2.imaginary );
 } // end function operator+

 // subtraction operator
 Complex Complex::operator-( const Complex &operand2 ) const
 {
 return Complex( real - operand2.real,
 imaginary - operand2.imaginary );

 } // end function operator-

 // display a Complex object in the form: (a, b)
 void Complex::print() const
 {
 cout << '(' << real << ", " << imaginary << ')';
 } // end function print
Fig. 11.3 | Complex numbers.
 // Complex class test program.
 #include 
 #include "Complex.h"
 using namespace std;

 int main()
 {
 Complex x;
 Complex y( 4.3, 8.2 );
 Complex z( 3.3, 1.1 );

 cout << "x: ";
 x.print();
 cout << "\ny: ";
 y.print();
 cout << "\nz: ";
 z.print();

 x = y + z;
 cout << "\n\nx = y + z:" << endl;
 x.print();
 cout << " = ";
 y.print();
 cout << " + ";
 z.print();

 x = y - z;
 cout << "\n\nx = y - z:" << endl;
 x.print();
 cout << " = ";
 y.print();
 cout << " - ";
 z.print();
 cout << endl;
 } // end main
x: (0, 0) y: (4.3, 8.2) z: (3.3, 1.1) x = y + z: (7.6, 9.3) = (4.3, 8.2) + (3.3, 1.1) x = y - z: (1, 7.1) = (4.3, 8.2) - (3.3, 1.1)

Computer Science & Information Technology